Cystoscopy is one of the most commonly performed procedures in the urology office setting, and is an invaluable tool in identifying lower urinary tract pathology. The development of flexible endoscopic technology has allowed the procedure to be performed using flexible instrumentation, which reduces patient discomfort and allows the procedure to be performed in the supine position. While office flexible cystoscopy has become a standard urology procedure, it is important to acknowledge that the flexible cystoscope is a complex instrument that requires reprocessing between patients. Numerous federal bodies and professional societies have produced guidelines and standards for the reprocessing of endoscopes, but few specifically address the reprocessing of cystoscopes. This joint AUA-SUNA white paper presents a brief overview of the current guidelines for reprocessing of flexible cystoscopes, and highlights particular aspects of instrument reprocessing that are unique to cystoscopy.

In many clinical settings, urology office staff are responsible for cleaning, reprocessing and preparing cystoscopes for patient use. The process should be consistent from office to office. This includes standardized reprocessing steps for cleaning, high-level disinfection and/or sterilization. Written policies and procedures should be established in all healthcare settings and should be reviewed regularly. These documents should be readily available in the practice area. Employees should be trained in these practices during orientation. Ongoing educational programs for personnel should be developed to foster a safe and positive atmosphere for patients and staff.
It is important that only personnel trained in instrument handling and processing should be tasked with reprocessing cystoscopic equipment. Initial and ongoing training should be documented, as damage to a cystoscope may result in loss of the instrument’s integrity with subsequent contamination. Records should be maintained of daily compliance. Staff should follow manufacturer-supplied written instructions on handling, cleaning and reprocessing. The reprocessing procedures should be appropriate to the practice setting and based on availability, product compatibility, cost, healthcare worker safety and turnaround time.

Precleaning should be done to remove and loosen debris before manual cleaning is performed. To prevent drying of secretions and make the contaminated cystoscope safe to handle, this precleaning should begin promptly after the cystoscope is removed from the patient. Standard universal precautions should be followed and personal protective equipment (for example, gloves and eyewear) should be worn. Gross debris should be wiped off the outside surface using a soft, disposable cloth or sponge, and water or enzymatic detergent should be flushed through the channels.
After the initial precleaning, a leak test should be performed to ensure that the flexible covering and the internal channels are intact. A special device designed for leak testing should be attached to the scope and pressurized, and the scope should be submerged to test for leaks. Even a tiny hole can be a potential contamination source by allowing fluid entry that will accumulate during repeated use and processing. Leak testing and inspection are the only ways for early detection of fluid invasion. If a leak is detected, contact the cystoscope manufacturer for specific instructions about decontaminating and returning the device for repair. Certain flexible cystoscopes may have a proprietary seal that precludes leak testing. In such instances, users should follow the manufacturer’s instructions to assess for instrument damage.
Cleaning removes all visible soil and significantly reduces the bioburden in order to facilitate the biocidal process. The interior and exterior of the cystoscope must be meticulously cleaned. This is vital to the effectiveness of subsequent microbicidal processes used for disinfection or sterilization. The cystoscope should be disassembled so that cleaning and removal of all protein material can be accomplished. All detachable parts of the cystoscope such as valves, adapters and caps should be removed according to the manufacturer’s instructions for use.
Users should check the instructions for use or operator’s manual for the cystoscope for specific instructions on cleaning, disinfection and/or sterilization. Devices must be disassembled properly to ensure adequate reprocessing. The cleaning process involves the entire instrument. Channels, or lumens, should be flushed and/or brushed to remove all debris. Devices should be cleaned promptly following the procedure to prevent bioburden from drying, which makes it more difficult to remove.
Cleaning should be done by using a recommended enzymatic detergent, which assists the cleaning process by breaking down the bioburden. Since cystoscopes and accessories are exposed to blood (protein) and irrigation solutions, the enzymatic cleaner should be able to digest proteins and sugars. Enzymatic detergents are chemicals that must be used according to label instructions in order to maintain their potency. They can be rendered ineffective by temperatures that are too high or too low, or if the concentration is incorrect. Additional products should not be mixed with enzymatic solutions; this may cause a chemical reaction that could damage the devices or render the solution ineffective. The used enzymatic detergent should be discarded after each use.
The cleaning solution should contact all external and internal surfaces of the device being cleaned. It is important to follow the contact time, temperature and concentration recommended by the manufacturer of the cleaning solution to ensure effective cleaning. The lumens should be flushed and brushed to remove organic material (blood, tissue, etc.). Auxiliary channels should be cleaned, even if they have not been used in the examination. The brush should be appropriate to the diameter of the lumen and should be passed through the lumen under water (to minimize aerosolization). The bristles should be cleaned before retracting the brush back through the lumen. Reuseable brushes should undergo HLD after each use. A soft cloth or brush should be used to clean the external surface. Abrasive cleaners should never be used, as abrasions and dents can create a location for micro-organisms to collect and multiply.

Following the cleaning process, all parts of the cystoscope should be thoroughly rinsed to remove any residues that may interfere with the efficacy of the HLD or sterilization process. Water (distilled, deionized or tap water) may be used for rinsing. The rinsing solution should not be reused.
As noted above, the minimum recommended practice for cystoscopes is HLD with a liquid sterilant/disinfectant approved by the U.S. Food and Drug Administration (FDA). Alternatively, users may choose to sterilize the scopes when the necessary materials are available. Multiple high-level disinfectants exist, and the required exposure times and temperatures vary according to the agent that is used. All products should be used according to the directions on the label regarding concentration, rinsing and re-use. Always confirm that the device is compatible (will not be damaged by the chemical) prior to use. If the endoscope manufacturer warns against using a specific agent because it may cause functional damage, then that chemical agent should be avoided. Details for commonly used disinfectants/ sterilants are provided below. Products may become available that were not in existence when this document was written. A current list of disinfectants/ sterilants that are approved for use with flexible endoscopes is available on the FDA Web site (

Leave a Reply

Your email address will not be published. Required fields are marked *